Metamath Proof Explorer


Theorem lnfnmuli

Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 TLinFn
Assertion lnfnmuli ABTAB=ATB

Proof

Step Hyp Ref Expression
1 lnfnl.1 TLinFn
2 ax-hv0cl 0
3 1 lnfnli AB0TAB+0=ATB+T0
4 2 3 mp3an3 ABTAB+0=ATB+T0
5 hvmulcl ABAB
6 ax-hvaddid ABAB+0=AB
7 5 6 syl ABAB+0=AB
8 7 fveq2d ABTAB+0=TAB
9 1 lnfn0i T0=0
10 9 oveq2i ATB+T0=ATB+0
11 1 lnfnfi T:
12 11 ffvelcdmi BTB
13 mulcl ATBATB
14 12 13 sylan2 ABATB
15 14 addridd ABATB+0=ATB
16 10 15 eqtrid ABATB+T0=ATB
17 4 8 16 3eqtr3d ABTAB=ATB