Metamath Proof Explorer


Theorem lnmlssfg

Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lnmlssfg.s S=LSubSpM
lnmlssfg.r R=M𝑠U
Assertion lnmlssfg MLNoeMUSRLFinGen

Proof

Step Hyp Ref Expression
1 lnmlssfg.s S=LSubSpM
2 lnmlssfg.r R=M𝑠U
3 1 islnm MLNoeMMLModaSM𝑠aLFinGen
4 3 simprbi MLNoeMaSM𝑠aLFinGen
5 oveq2 a=UM𝑠a=M𝑠U
6 5 2 eqtr4di a=UM𝑠a=R
7 6 eleq1d a=UM𝑠aLFinGenRLFinGen
8 7 rspcv USaSM𝑠aLFinGenRLFinGen
9 4 8 mpan9 MLNoeMUSRLFinGen