Metamath Proof Explorer


Theorem lnon0

Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses lnon0.1 X = BaseSet U
lnon0.6 Z = 0 vec U
lnon0.0 O = U 0 op W
lnon0.7 L = U LnOp W
Assertion lnon0 U NrmCVec W NrmCVec T L T O x X x Z

Proof

Step Hyp Ref Expression
1 lnon0.1 X = BaseSet U
2 lnon0.6 Z = 0 vec U
3 lnon0.0 O = U 0 op W
4 lnon0.7 L = U LnOp W
5 ralnex x X ¬ x Z ¬ x X x Z
6 nne ¬ x Z x = Z
7 6 ralbii x X ¬ x Z x X x = Z
8 5 7 bitr3i ¬ x X x Z x X x = Z
9 fveq2 x = Z T x = T Z
10 eqid BaseSet W = BaseSet W
11 eqid 0 vec W = 0 vec W
12 1 10 2 11 4 lno0 U NrmCVec W NrmCVec T L T Z = 0 vec W
13 9 12 sylan9eqr U NrmCVec W NrmCVec T L x = Z T x = 0 vec W
14 13 ex U NrmCVec W NrmCVec T L x = Z T x = 0 vec W
15 14 ralimdv U NrmCVec W NrmCVec T L x X x = Z x X T x = 0 vec W
16 1 10 4 lnof U NrmCVec W NrmCVec T L T : X BaseSet W
17 16 ffnd U NrmCVec W NrmCVec T L T Fn X
18 15 17 jctild U NrmCVec W NrmCVec T L x X x = Z T Fn X x X T x = 0 vec W
19 fconstfv T : X 0 vec W T Fn X x X T x = 0 vec W
20 fvex 0 vec W V
21 20 fconst2 T : X 0 vec W T = X × 0 vec W
22 19 21 bitr3i T Fn X x X T x = 0 vec W T = X × 0 vec W
23 18 22 syl6ib U NrmCVec W NrmCVec T L x X x = Z T = X × 0 vec W
24 1 11 3 0ofval U NrmCVec W NrmCVec O = X × 0 vec W
25 24 3adant3 U NrmCVec W NrmCVec T L O = X × 0 vec W
26 25 eqeq2d U NrmCVec W NrmCVec T L T = O T = X × 0 vec W
27 23 26 sylibrd U NrmCVec W NrmCVec T L x X x = Z T = O
28 8 27 syl5bi U NrmCVec W NrmCVec T L ¬ x X x Z T = O
29 28 necon1ad U NrmCVec W NrmCVec T L T O x X x Z
30 29 imp U NrmCVec W NrmCVec T L T O x X x Z