Metamath Proof Explorer


Theorem lnopco0i

Description: The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopco.1 SLinOp
lnopco.2 TLinOp
Assertion lnopco0i normopT=0normopST=0

Proof

Step Hyp Ref Expression
1 lnopco.1 SLinOp
2 lnopco.2 TLinOp
3 coeq2 T=0hopST=S0hop
4 0lnop 0hopLinOp
5 1 4 lnopcoi S0hopLinOp
6 5 lnopfi S0hop:
7 ffn S0hop:S0hopFn
8 6 7 ax-mp S0hopFn
9 ho0f 0hop:
10 ffn 0hop:0hopFn
11 9 10 ax-mp 0hopFn
12 eqfnfv S0hopFn0hopFnS0hop=0hopxS0hopx=0hopx
13 8 11 12 mp2an S0hop=0hopxS0hopx=0hopx
14 ho0val x0hopx=0
15 14 fveq2d xS0hopx=S0
16 1 lnop0i S0=0
17 15 16 eqtrdi xS0hopx=0
18 1 lnopfi S:
19 18 9 hocoi xS0hopx=S0hopx
20 17 19 14 3eqtr4d xS0hopx=0hopx
21 13 20 mprgbir S0hop=0hop
22 3 21 eqtrdi T=0hopST=0hop
23 2 nmlnop0iHIL normopT=0T=0hop
24 1 2 lnopcoi STLinOp
25 24 nmlnop0iHIL normopST=0ST=0hop
26 22 23 25 3imtr4i normopT=0normopST=0