Metamath Proof Explorer


Theorem lnopeq0lem2

Description: Lemma for lnopeq0i . (Contributed by NM, 26-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnopeq0.1 TLinOp
Assertion lnopeq0lem2 ABTAihB=TA+BihA+B-TA-BihA-B+iTA+iBihA+iBTA-iBihA-iB4

Proof

Step Hyp Ref Expression
1 lnopeq0.1 TLinOp
2 fveq2 A=ifAA0TA=TifAA0
3 2 oveq1d A=ifAA0TAihB=TifAA0ihB
4 fvoveq1 A=ifAA0TA+B=TifAA0+B
5 oveq1 A=ifAA0A+B=ifAA0+B
6 4 5 oveq12d A=ifAA0TA+BihA+B=TifAA0+BihifAA0+B
7 fvoveq1 A=ifAA0TA-B=TifAA0-B
8 oveq1 A=ifAA0A-B=ifAA0-B
9 7 8 oveq12d A=ifAA0TA-BihA-B=TifAA0-BihifAA0-B
10 6 9 oveq12d A=ifAA0TA+BihA+BTA-BihA-B=TifAA0+BihifAA0+BTifAA0-BihifAA0-B
11 fvoveq1 A=ifAA0TA+iB=TifAA0+iB
12 oveq1 A=ifAA0A+iB=ifAA0+iB
13 11 12 oveq12d A=ifAA0TA+iBihA+iB=TifAA0+iBihifAA0+iB
14 fvoveq1 A=ifAA0TA-iB=TifAA0-iB
15 oveq1 A=ifAA0A-iB=ifAA0-iB
16 14 15 oveq12d A=ifAA0TA-iBihA-iB=TifAA0-iBihifAA0-iB
17 13 16 oveq12d A=ifAA0TA+iBihA+iBTA-iBihA-iB=TifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB
18 17 oveq2d A=ifAA0iTA+iBihA+iBTA-iBihA-iB=iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB
19 10 18 oveq12d A=ifAA0TA+BihA+B-TA-BihA-B+iTA+iBihA+iBTA-iBihA-iB=TifAA0+BihifAA0+B-TifAA0-BihifAA0-B+iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB
20 19 oveq1d A=ifAA0TA+BihA+B-TA-BihA-B+iTA+iBihA+iBTA-iBihA-iB4=TifAA0+BihifAA0+B-TifAA0-BihifAA0-B+iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB4
21 3 20 eqeq12d A=ifAA0TAihB=TA+BihA+B-TA-BihA-B+iTA+iBihA+iBTA-iBihA-iB4TifAA0ihB=TifAA0+BihifAA0+B-TifAA0-BihifAA0-B+iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB4
22 oveq2 B=ifBB0TifAA0ihB=TifAA0ihifBB0
23 oveq2 B=ifBB0ifAA0+B=ifAA0+ifBB0
24 23 fveq2d B=ifBB0TifAA0+B=TifAA0+ifBB0
25 24 23 oveq12d B=ifBB0TifAA0+BihifAA0+B=TifAA0+ifBB0ihifAA0+ifBB0
26 oveq2 B=ifBB0ifAA0-B=ifAA0-ifBB0
27 26 fveq2d B=ifBB0TifAA0-B=TifAA0-ifBB0
28 27 26 oveq12d B=ifBB0TifAA0-BihifAA0-B=TifAA0-ifBB0ihifAA0-ifBB0
29 25 28 oveq12d B=ifBB0TifAA0+BihifAA0+BTifAA0-BihifAA0-B=TifAA0+ifBB0ihifAA0+ifBB0TifAA0-ifBB0ihifAA0-ifBB0
30 oveq2 B=ifBB0iB=iifBB0
31 30 oveq2d B=ifBB0ifAA0+iB=ifAA0+iifBB0
32 31 fveq2d B=ifBB0TifAA0+iB=TifAA0+iifBB0
33 32 31 oveq12d B=ifBB0TifAA0+iBihifAA0+iB=TifAA0+iifBB0ihifAA0+iifBB0
34 30 oveq2d B=ifBB0ifAA0-iB=ifAA0-iifBB0
35 34 fveq2d B=ifBB0TifAA0-iB=TifAA0-iifBB0
36 35 34 oveq12d B=ifBB0TifAA0-iBihifAA0-iB=TifAA0-iifBB0ihifAA0-iifBB0
37 33 36 oveq12d B=ifBB0TifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB=TifAA0+iifBB0ihifAA0+iifBB0TifAA0-iifBB0ihifAA0-iifBB0
38 37 oveq2d B=ifBB0iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB=iTifAA0+iifBB0ihifAA0+iifBB0TifAA0-iifBB0ihifAA0-iifBB0
39 29 38 oveq12d B=ifBB0TifAA0+BihifAA0+B-TifAA0-BihifAA0-B+iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB=TifAA0+ifBB0ihifAA0+ifBB0-TifAA0-ifBB0ihifAA0-ifBB0+iTifAA0+iifBB0ihifAA0+iifBB0TifAA0-iifBB0ihifAA0-iifBB0
40 39 oveq1d B=ifBB0TifAA0+BihifAA0+B-TifAA0-BihifAA0-B+iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB4=TifAA0+ifBB0ihifAA0+ifBB0-TifAA0-ifBB0ihifAA0-ifBB0+iTifAA0+iifBB0ihifAA0+iifBB0TifAA0-iifBB0ihifAA0-iifBB04
41 22 40 eqeq12d B=ifBB0TifAA0ihB=TifAA0+BihifAA0+B-TifAA0-BihifAA0-B+iTifAA0+iBihifAA0+iBTifAA0-iBihifAA0-iB4TifAA0ihifBB0=TifAA0+ifBB0ihifAA0+ifBB0-TifAA0-ifBB0ihifAA0-ifBB0+iTifAA0+iifBB0ihifAA0+iifBB0TifAA0-iifBB0ihifAA0-iifBB04
42 ifhvhv0 ifAA0
43 ifhvhv0 ifBB0
44 1 42 43 lnopeq0lem1 TifAA0ihifBB0=TifAA0+ifBB0ihifAA0+ifBB0-TifAA0-ifBB0ihifAA0-ifBB0+iTifAA0+iifBB0ihifAA0+iifBB0TifAA0-iifBB0ihifAA0-iifBB04
45 21 41 44 dedth2h ABTAihB=TA+BihA+B-TA-BihA-B+iTA+iBihA+iBTA-iBihA-iB4