Metamath Proof Explorer


Theorem logblebd

Description: The general logarithm is monotone/increasing, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses logblebd.1 φB
logblebd.2 φ2B
logblebd.3 φX
logblebd.4 φ0<X
logblebd.5 φY
logblebd.6 φ0<Y
logblebd.7 φXY
Assertion logblebd φlogBXlogBY

Proof

Step Hyp Ref Expression
1 logblebd.1 φB
2 logblebd.2 φ2B
3 logblebd.3 φX
4 logblebd.4 φ0<X
5 logblebd.5 φY
6 logblebd.6 φ0<Y
7 logblebd.7 φXY
8 1 2 jca φB2B
9 2z 2
10 eluz1 2B2B2B
11 9 10 ax-mp B2B2B
12 8 11 sylibr φB2
13 3 4 elrpd φX+
14 5 6 elrpd φY+
15 12 13 14 3jca φB2X+Y+
16 logbleb B2X+Y+XYlogBXlogBY
17 15 16 syl φXYlogBXlogBY
18 7 17 mpbid φlogBXlogBY