Metamath Proof Explorer


Theorem logblebd

Description: The general logarithm is monotone/increasing, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses logblebd.1 φ B
logblebd.2 φ 2 B
logblebd.3 φ X
logblebd.4 φ 0 < X
logblebd.5 φ Y
logblebd.6 φ 0 < Y
logblebd.7 φ X Y
Assertion logblebd φ log B X log B Y

Proof

Step Hyp Ref Expression
1 logblebd.1 φ B
2 logblebd.2 φ 2 B
3 logblebd.3 φ X
4 logblebd.4 φ 0 < X
5 logblebd.5 φ Y
6 logblebd.6 φ 0 < Y
7 logblebd.7 φ X Y
8 1 2 jca φ B 2 B
9 2z 2
10 eluz1 2 B 2 B 2 B
11 9 10 ax-mp B 2 B 2 B
12 8 11 sylibr φ B 2
13 3 4 elrpd φ X +
14 5 6 elrpd φ Y +
15 12 13 14 3jca φ B 2 X + Y +
16 logbleb B 2 X + Y + X Y log B X log B Y
17 15 16 syl φ X Y log B X log B Y
18 7 17 mpbid φ log B X log B Y