Metamath Proof Explorer


Theorem logcxp0

Description: Logarithm of a complex power. Generalization of logcxp . (Contributed by AV, 22-May-2020)

Ref Expression
Assertion logcxp0 A0BBlogAranloglogAB=BlogA

Proof

Step Hyp Ref Expression
1 eldifi A0A
2 1 3ad2ant1 A0BBlogAranlogA
3 eldifsni A0A0
4 3 3ad2ant1 A0BBlogAranlogA0
5 simp2 A0BBlogAranlogB
6 2 4 5 cxpefd A0BBlogAranlogAB=eBlogA
7 6 fveq2d A0BBlogAranloglogAB=logeBlogA
8 logef BlogAranloglogeBlogA=BlogA
9 8 3ad2ant3 A0BBlogAranloglogeBlogA=BlogA
10 7 9 eqtrd A0BBlogAranloglogAB=BlogA