Metamath Proof Explorer


Theorem logcxp0

Description: Logarithm of a complex power. Generalization of logcxp . (Contributed by AV, 22-May-2020)

Ref Expression
Assertion logcxp0 A 0 B B log A ran log log A B = B log A

Proof

Step Hyp Ref Expression
1 eldifi A 0 A
2 1 3ad2ant1 A 0 B B log A ran log A
3 eldifsni A 0 A 0
4 3 3ad2ant1 A 0 B B log A ran log A 0
5 simp2 A 0 B B log A ran log B
6 2 4 5 cxpefd A 0 B B log A ran log A B = e B log A
7 6 fveq2d A 0 B B log A ran log log A B = log e B log A
8 logef B log A ran log log e B log A = B log A
9 8 3ad2ant3 A 0 B B log A ran log log e B log A = B log A
10 7 9 eqtrd A 0 B B log A ran log log A B = B log A