Metamath Proof Explorer


Theorem logmul2

Description: Generalization of relogmul to a complex left argument. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion logmul2 AA0B+logAB=logA+logB

Proof

Step Hyp Ref Expression
1 logcl AA0logA
2 1 3adant3 AA0B+logA
3 relogcl B+logB
4 3 3ad2ant3 AA0B+logB
5 4 recnd AA0B+logB
6 efadd logAlogBelogA+logB=elogAelogB
7 2 5 6 syl2anc AA0B+elogA+logB=elogAelogB
8 eflog AA0elogA=A
9 8 3adant3 AA0B+elogA=A
10 reeflog B+elogB=B
11 10 3ad2ant3 AA0B+elogB=B
12 9 11 oveq12d AA0B+elogAelogB=AB
13 7 12 eqtrd AA0B+elogA+logB=AB
14 13 fveq2d AA0B+logelogA+logB=logAB
15 logrncl AA0logAranlog
16 15 3adant3 AA0B+logAranlog
17 logrnaddcl logAranloglogBlogA+logBranlog
18 16 4 17 syl2anc AA0B+logA+logBranlog
19 logef logA+logBranloglogelogA+logB=logA+logB
20 18 19 syl AA0B+logelogA+logB=logA+logB
21 14 20 eqtr3d AA0B+logAB=logA+logB