Metamath Proof Explorer


Theorem logrnaddcl

Description: The range of the natural logarithm is closed under addition with reals. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion logrnaddcl AranlogBA+Branlog

Proof

Step Hyp Ref Expression
1 logrncn AranlogA
2 recn BB
3 addcl ABA+B
4 1 2 3 syl2an AranlogBA+B
5 ellogrn AranlogAπ<AAπ
6 5 simp2bi Aranlogπ<A
7 6 adantr AranlogBπ<A
8 imadd ABA+B=A+B
9 1 2 8 syl2an AranlogBA+B=A+B
10 reim0 BB=0
11 10 adantl AranlogBB=0
12 11 oveq2d AranlogBA+B=A+0
13 1 adantr AranlogBA
14 13 imcld AranlogBA
15 14 recnd AranlogBA
16 15 addridd AranlogBA+0=A
17 9 12 16 3eqtrd AranlogBA+B=A
18 7 17 breqtrrd AranlogBπ<A+B
19 5 simp3bi AranlogAπ
20 19 adantr AranlogBAπ
21 17 20 eqbrtrd AranlogBA+Bπ
22 ellogrn A+BranlogA+Bπ<A+BA+Bπ
23 4 18 21 22 syl3anbrc AranlogBA+Branlog