Description: Now, we establish that R is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lrrec.1 | No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |- | |
Assertion | lrrecpo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lrrec.1 | Could not format R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } : No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |- | |
2 | bdayelon | |
|
3 | 2 | onirri | |
4 | 1 | lrrecval2 | |
5 | 4 | anidms | |
6 | 3 5 | mtbiri | |
7 | 6 | adantl | |
8 | bdayelon | |
|
9 | ontr1 | |
|
10 | 8 9 | ax-mp | |
11 | 1 | lrrecval2 | |
12 | 11 | 3adant3 | |
13 | 1 | lrrecval2 | |
14 | 13 | 3adant1 | |
15 | 12 14 | anbi12d | |
16 | 1 | lrrecval2 | |
17 | 16 | 3adant2 | |
18 | 15 17 | imbi12d | |
19 | 10 18 | mpbiri | |
20 | 19 | adantl | |
21 | 7 20 | ispod | |
22 | 21 | mptru | |