Metamath Proof Explorer


Theorem lrrecpo

Description: Now, we establish that R is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
Assertion lrrecpo RPoNo

Proof

Step Hyp Ref Expression
1 lrrec.1 Could not format R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } : No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
2 bdayelon bdayaOn
3 2 onirri ¬bdayabdaya
4 1 lrrecval2 aNoaNoaRabdayabdaya
5 4 anidms aNoaRabdayabdaya
6 3 5 mtbiri aNo¬aRa
7 6 adantl aNo¬aRa
8 bdayelon bdaycOn
9 ontr1 bdaycOnbdayabdaybbdaybbdaycbdayabdayc
10 8 9 ax-mp bdayabdaybbdaybbdaycbdayabdayc
11 1 lrrecval2 aNobNoaRbbdayabdayb
12 11 3adant3 aNobNocNoaRbbdayabdayb
13 1 lrrecval2 bNocNobRcbdaybbdayc
14 13 3adant1 aNobNocNobRcbdaybbdayc
15 12 14 anbi12d aNobNocNoaRbbRcbdayabdaybbdaybbdayc
16 1 lrrecval2 aNocNoaRcbdayabdayc
17 16 3adant2 aNobNocNoaRcbdayabdayc
18 15 17 imbi12d aNobNocNoaRbbRcaRcbdayabdaybbdaybbdaycbdayabdayc
19 10 18 mpbiri aNobNocNoaRbbRcaRc
20 19 adantl aNobNocNoaRbbRcaRc
21 7 20 ispod RPoNo
22 21 mptru RPoNo