Metamath Proof Explorer


Theorem lsatn0

Description: A 1-dim subspace (atom) of a left module or left vector space is nonzero. ( atne0 analog.) (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatn0.o 0˙=0W
lsatn0.a A=LSAtomsW
lsatn0.w φWLMod
lsatn0.u φUA
Assertion lsatn0 φU0˙

Proof

Step Hyp Ref Expression
1 lsatn0.o 0˙=0W
2 lsatn0.a A=LSAtomsW
3 lsatn0.w φWLMod
4 lsatn0.u φUA
5 eqid BaseW=BaseW
6 eqid LSpanW=LSpanW
7 5 6 1 2 islsat WLModUAvBaseW0˙U=LSpanWv
8 3 7 syl φUAvBaseW0˙U=LSpanWv
9 4 8 mpbid φvBaseW0˙U=LSpanWv
10 eldifsn vBaseW0˙vBaseWv0˙
11 5 1 6 lspsneq0 WLModvBaseWLSpanWv=0˙v=0˙
12 3 11 sylan φvBaseWLSpanWv=0˙v=0˙
13 12 biimpd φvBaseWLSpanWv=0˙v=0˙
14 13 necon3d φvBaseWv0˙LSpanWv0˙
15 14 expimpd φvBaseWv0˙LSpanWv0˙
16 10 15 biimtrid φvBaseW0˙LSpanWv0˙
17 neeq1 U=LSpanWvU0˙LSpanWv0˙
18 17 biimprcd LSpanWv0˙U=LSpanWvU0˙
19 16 18 syl6 φvBaseW0˙U=LSpanWvU0˙
20 19 rexlimdv φvBaseW0˙U=LSpanWvU0˙
21 9 20 mpd φU0˙