Metamath Proof Explorer


Theorem lspfval

Description: The span function for a left vector space (or a left module). ( df-span analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspval.v V=BaseW
lspval.s S=LSubSpW
lspval.n N=LSpanW
Assertion lspfval WXN=s𝒫VtS|st

Proof

Step Hyp Ref Expression
1 lspval.v V=BaseW
2 lspval.s S=LSubSpW
3 lspval.n N=LSpanW
4 elex WXWV
5 fveq2 w=WBasew=BaseW
6 5 1 eqtr4di w=WBasew=V
7 6 pweqd w=W𝒫Basew=𝒫V
8 fveq2 w=WLSubSpw=LSubSpW
9 8 2 eqtr4di w=WLSubSpw=S
10 9 rabeqdv w=WtLSubSpw|st=tS|st
11 10 inteqd w=WtLSubSpw|st=tS|st
12 7 11 mpteq12dv w=Ws𝒫BasewtLSubSpw|st=s𝒫VtS|st
13 df-lsp LSpan=wVs𝒫BasewtLSubSpw|st
14 1 fvexi VV
15 14 pwex 𝒫VV
16 15 mptex s𝒫VtS|stV
17 12 13 16 fvmpt WVLSpanW=s𝒫VtS|st
18 4 17 syl WXLSpanW=s𝒫VtS|st
19 3 18 eqtrid WXN=s𝒫VtS|st