Metamath Proof Explorer


Theorem lspsnel

Description: Member of span of the singleton of a vector. ( elspansn analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspsn.f F=ScalarW
lspsn.k K=BaseF
lspsn.v V=BaseW
lspsn.t ·˙=W
lspsn.n N=LSpanW
Assertion lspsnel WLModXVUNXkKU=k·˙X

Proof

Step Hyp Ref Expression
1 lspsn.f F=ScalarW
2 lspsn.k K=BaseF
3 lspsn.v V=BaseW
4 lspsn.t ·˙=W
5 lspsn.n N=LSpanW
6 1 2 3 4 5 lspsn WLModXVNX=v|kKv=k·˙X
7 6 eleq2d WLModXVUNXUv|kKv=k·˙X
8 id U=k·˙XU=k·˙X
9 ovex k·˙XV
10 8 9 eqeltrdi U=k·˙XUV
11 10 rexlimivw kKU=k·˙XUV
12 eqeq1 v=Uv=k·˙XU=k·˙X
13 12 rexbidv v=UkKv=k·˙XkKU=k·˙X
14 11 13 elab3 Uv|kKv=k·˙XkKU=k·˙X
15 7 14 bitrdi WLModXVUNXkKU=k·˙X