Metamath Proof Explorer


Theorem lssne0

Description: A nonzero subspace has a nonzero vector. ( shne0i analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lss0cl.z 0˙=0W
lss0cl.s S=LSubSpW
Assertion lssne0 XSX0˙yXy0˙

Proof

Step Hyp Ref Expression
1 lss0cl.z 0˙=0W
2 lss0cl.s S=LSubSpW
3 2 lssn0 XSX
4 eqsn XX=0˙yXy=0˙
5 3 4 syl XSX=0˙yXy=0˙
6 nne ¬y0˙y=0˙
7 6 ralbii yX¬y0˙yXy=0˙
8 ralnex yX¬y0˙¬yXy0˙
9 7 8 bitr3i yXy=0˙¬yXy0˙
10 5 9 bitr2di XS¬yXy0˙X=0˙
11 10 necon1abid XSX0˙yXy0˙