Metamath Proof Explorer


Theorem lssuni

Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lssss.v V=BaseW
lssss.s S=LSubSpW
lssuni.w φWLMod
Assertion lssuni φS=V

Proof

Step Hyp Ref Expression
1 lssss.v V=BaseW
2 lssss.s S=LSubSpW
3 lssuni.w φWLMod
4 rabid2 S=xS|xVxSxV
5 1 2 lssss xSxV
6 4 5 mprgbir S=xS|xV
7 6 unieqi S=xS|xV
8 1 2 lss1 WLModVS
9 unimax VSxS|xV=V
10 3 8 9 3syl φxS|xV=V
11 7 10 eqtrid φS=V