Metamath Proof Explorer


Theorem lssvneln0

Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 19-Jul-2022)

Ref Expression
Hypotheses lssvneln0.o 0˙=0W
lssvneln0.s S=LSubSpW
lssvneln0.w φWLMod
lssvneln0.u φUS
lssvneln0.n φ¬XU
Assertion lssvneln0 φX0˙

Proof

Step Hyp Ref Expression
1 lssvneln0.o 0˙=0W
2 lssvneln0.s S=LSubSpW
3 lssvneln0.w φWLMod
4 lssvneln0.u φUS
5 lssvneln0.n φ¬XU
6 1 2 lss0cl WLModUS0˙U
7 3 4 6 syl2anc φ0˙U
8 eleq1a 0˙UX=0˙XU
9 7 8 syl φX=0˙XU
10 9 necon3bd φ¬XUX0˙
11 5 10 mpd φX0˙