Metamath Proof Explorer


Theorem ltletr

Description: Transitive law. (Contributed by NM, 25-Aug-1999)

Ref Expression
Assertion ltletr ABCA<BBCA<C

Proof

Step Hyp Ref Expression
1 leloe BCBCB<CB=C
2 1 3adant1 ABCBCB<CB=C
3 lttr ABCA<BB<CA<C
4 3 expcomd ABCB<CA<BA<C
5 breq2 B=CA<BA<C
6 5 biimpd B=CA<BA<C
7 6 a1i ABCB=CA<BA<C
8 4 7 jaod ABCB<CB=CA<BA<C
9 2 8 sylbid ABCBCA<BA<C
10 9 impcomd ABCA<BBCA<C