Metamath Proof Explorer


Theorem ltrneq

Description: The equality of two translations is determined by their equality at atoms not under co-atom W . (Contributed by NM, 20-Jun-2013)

Ref Expression
Hypotheses ltrne.l ˙ = K
ltrne.a A = Atoms K
ltrne.h H = LHyp K
ltrne.t T = LTrn K W
Assertion ltrneq K HL W H F T G T p A ¬ p ˙ W F p = G p F = G

Proof

Step Hyp Ref Expression
1 ltrne.l ˙ = K
2 ltrne.a A = Atoms K
3 ltrne.h H = LHyp K
4 ltrne.t T = LTrn K W
5 simp11 K HL W H F T G T p A p ˙ W K HL W H
6 simp12 K HL W H F T G T p A p ˙ W F T
7 eqid Base K = Base K
8 7 2 atbase p A p Base K
9 8 3ad2ant2 K HL W H F T G T p A p ˙ W p Base K
10 simp3 K HL W H F T G T p A p ˙ W p ˙ W
11 7 1 3 4 ltrnval1 K HL W H F T p Base K p ˙ W F p = p
12 5 6 9 10 11 syl112anc K HL W H F T G T p A p ˙ W F p = p
13 simp13 K HL W H F T G T p A p ˙ W G T
14 7 1 3 4 ltrnval1 K HL W H G T p Base K p ˙ W G p = p
15 5 13 9 10 14 syl112anc K HL W H F T G T p A p ˙ W G p = p
16 12 15 eqtr4d K HL W H F T G T p A p ˙ W F p = G p
17 16 3expia K HL W H F T G T p A p ˙ W F p = G p
18 pm2.61 p ˙ W F p = G p ¬ p ˙ W F p = G p F p = G p
19 17 18 syl K HL W H F T G T p A ¬ p ˙ W F p = G p F p = G p
20 re1tbw2 F p = G p ¬ p ˙ W F p = G p
21 19 20 impbid1 K HL W H F T G T p A ¬ p ˙ W F p = G p F p = G p
22 21 ralbidva K HL W H F T G T p A ¬ p ˙ W F p = G p p A F p = G p
23 2 3 4 ltrneq2 K HL W H F T G T p A F p = G p F = G
24 22 23 bitrd K HL W H F T G T p A ¬ p ˙ W F p = G p F = G