Metamath Proof Explorer


Theorem ltrniotaval

Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses ltrniotaval.l ˙=K
ltrniotaval.a A=AtomsK
ltrniotaval.h H=LHypK
ltrniotaval.t T=LTrnKW
ltrniotaval.f F=ιfT|fP=Q
Assertion ltrniotaval KHLWHPA¬P˙WQA¬Q˙WFP=Q

Proof

Step Hyp Ref Expression
1 ltrniotaval.l ˙=K
2 ltrniotaval.a A=AtomsK
3 ltrniotaval.h H=LHypK
4 ltrniotaval.t T=LTrnKW
5 ltrniotaval.f F=ιfT|fP=Q
6 1 2 3 4 cdleme KHLWHPA¬P˙WQA¬Q˙W∃!fTfP=Q
7 nfriota1 _fιfT|fP=Q
8 5 7 nfcxfr _fF
9 nfcv _fP
10 8 9 nffv _fFP
11 10 nfeq1 fFP=Q
12 fveq1 f=FfP=FP
13 12 eqeq1d f=FfP=QFP=Q
14 11 5 13 riotaprop ∃!fTfP=QFTFP=Q
15 14 simprd ∃!fTfP=QFP=Q
16 6 15 syl KHLWHPA¬P˙WQA¬Q˙WFP=Q