Metamath Proof Explorer


Theorem ltsub2

Description: Subtraction of both sides of 'less than'. (Contributed by NM, 29-Sep-2005) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltsub2 ABCA<BCB<CA

Proof

Step Hyp Ref Expression
1 lesub2 BACBACACB
2 1 3com12 ABCBACACB
3 2 notbid ABC¬BA¬CACB
4 simp1 ABCA
5 simp2 ABCB
6 4 5 ltnled ABCA<B¬BA
7 simp3 ABCC
8 7 5 resubcld ABCCB
9 7 4 resubcld ABCCA
10 8 9 ltnled ABCCB<CA¬CACB
11 3 6 10 3bitr4d ABCA<BCB<CA