Metamath Proof Explorer


Theorem ltxrlt

Description: The standard less-than and the extended real less-than < are identical when restricted to the non-extended reals RR . (Contributed by NM, 13-Oct-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion ltxrlt ABA<BA<B

Proof

Step Hyp Ref Expression
1 brun A−∞×+∞−∞×BA−∞×+∞BA−∞×B
2 brxp A−∞×+∞BA−∞B+∞
3 elsni B+∞B=+∞
4 pnfnre +∞
5 4 neli ¬+∞
6 simpr ABB
7 eleq1 B=+∞B+∞
8 6 7 imbitrid B=+∞AB+∞
9 5 8 mtoi B=+∞¬AB
10 3 9 syl B+∞¬AB
11 2 10 simplbiim A−∞×+∞B¬AB
12 brxp A−∞×BA−∞B
13 elsni A−∞A=−∞
14 mnfnre −∞
15 14 neli ¬−∞
16 simpl ABA
17 eleq1 A=−∞A−∞
18 16 17 imbitrid A=−∞AB−∞
19 15 18 mtoi A=−∞¬AB
20 13 19 syl A−∞¬AB
21 20 adantr A−∞B¬AB
22 12 21 sylbi A−∞×B¬AB
23 11 22 jaoi A−∞×+∞BA−∞×B¬AB
24 1 23 sylbi A−∞×+∞−∞×B¬AB
25 24 con2i AB¬A−∞×+∞−∞×B
26 df-ltxr <=xy|xyx<y−∞×+∞−∞×
27 26 equncomi <=−∞×+∞−∞×xy|xyx<y
28 27 breqi A<BA−∞×+∞−∞×xy|xyx<yB
29 brun A−∞×+∞−∞×xy|xyx<yBA−∞×+∞−∞×BAxy|xyx<yB
30 df-or A−∞×+∞−∞×BAxy|xyx<yB¬A−∞×+∞−∞×BAxy|xyx<yB
31 28 29 30 3bitri A<B¬A−∞×+∞−∞×BAxy|xyx<yB
32 biimt ¬A−∞×+∞−∞×BAxy|xyx<yB¬A−∞×+∞−∞×BAxy|xyx<yB
33 31 32 bitr4id ¬A−∞×+∞−∞×BA<BAxy|xyx<yB
34 25 33 syl ABA<BAxy|xyx<yB
35 breq12 x=Ay=Bx<yA<B
36 df-3an xyx<yxyx<y
37 36 opabbii xy|xyx<y=xy|xyx<y
38 35 37 brab2a Axy|xyx<yBABA<B
39 38 baibr ABA<BAxy|xyx<yB
40 34 39 bitr4d ABA<BA<B