Metamath Proof Explorer


Theorem lubeldm2d

Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses lubeldm2d.b φB=BaseK
lubeldm2d.l φ˙=K
lubeldm2d.u φU=lubK
lubeldm2d.p φxBψySy˙xzBySy˙zx˙z
lubeldm2d.k φKPoset
Assertion lubeldm2d φSdomUSBxBψ

Proof

Step Hyp Ref Expression
1 lubeldm2d.b φB=BaseK
2 lubeldm2d.l φ˙=K
3 lubeldm2d.u φU=lubK
4 lubeldm2d.p φxBψySy˙xzBySy˙zx˙z
5 lubeldm2d.k φKPoset
6 eqid BaseK=BaseK
7 eqid K=K
8 eqid lubK=lubK
9 biid ySyKxzBaseKySyKzxKzySyKxzBaseKySyKzxKz
10 6 7 8 9 5 lubeldm2 φSdomlubKSBaseKxBaseKySyKxzBaseKySyKzxKz
11 3 dmeqd φdomU=domlubK
12 11 eleq2d φSdomUSdomlubK
13 1 sseq2d φSBSBaseK
14 2 breqd φy˙xyKx
15 14 ralbidv φySy˙xySyKx
16 2 breqd φy˙zyKz
17 16 ralbidv φySy˙zySyKz
18 2 breqd φx˙zxKz
19 17 18 imbi12d φySy˙zx˙zySyKzxKz
20 1 19 raleqbidv φzBySy˙zx˙zzBaseKySyKzxKz
21 15 20 anbi12d φySy˙xzBySy˙zx˙zySyKxzBaseKySyKzxKz
22 21 adantr φxBySy˙xzBySy˙zx˙zySyKxzBaseKySyKzxKz
23 4 22 bitrd φxBψySyKxzBaseKySyKzxKz
24 23 pm5.32da φxBψxBySyKxzBaseKySyKzxKz
25 1 eleq2d φxBxBaseK
26 25 anbi1d φxBySyKxzBaseKySyKzxKzxBaseKySyKxzBaseKySyKzxKz
27 24 26 bitrd φxBψxBaseKySyKxzBaseKySyKzxKz
28 27 rexbidv2 φxBψxBaseKySyKxzBaseKySyKzxKz
29 13 28 anbi12d φSBxBψSBaseKxBaseKySyKxzBaseKySyKzxKz
30 10 12 29 3bitr4d φSdomUSBxBψ