Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lubeldm2d.b | |
|
lubeldm2d.l | |
||
lubeldm2d.u | |
||
lubeldm2d.p | |
||
lubeldm2d.k | |
||
Assertion | lubeldm2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubeldm2d.b | |
|
2 | lubeldm2d.l | |
|
3 | lubeldm2d.u | |
|
4 | lubeldm2d.p | |
|
5 | lubeldm2d.k | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | biid | |
|
10 | 6 7 8 9 5 | lubeldm2 | |
11 | 3 | dmeqd | |
12 | 11 | eleq2d | |
13 | 1 | sseq2d | |
14 | 2 | breqd | |
15 | 14 | ralbidv | |
16 | 2 | breqd | |
17 | 16 | ralbidv | |
18 | 2 | breqd | |
19 | 17 18 | imbi12d | |
20 | 1 19 | raleqbidv | |
21 | 15 20 | anbi12d | |
22 | 21 | adantr | |
23 | 4 22 | bitrd | |
24 | 23 | pm5.32da | |
25 | 1 | eleq2d | |
26 | 25 | anbi1d | |
27 | 24 26 | bitrd | |
28 | 27 | rexbidv2 | |
29 | 13 28 | anbi12d | |
30 | 10 12 29 | 3bitr4d | |