Metamath Proof Explorer


Theorem m1expevenALTV

Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 6-Jul-2020)

Ref Expression
Assertion m1expevenALTV NEven1N=1

Proof

Step Hyp Ref Expression
1 eqeq1 n=Nn=2iN=2i
2 1 rexbidv n=Nin=2iiN=2i
3 dfeven4 Even=n|in=2i
4 2 3 elrab2 NEvenNiN=2i
5 oveq2 N=2i1N=12i
6 neg1cn 1
7 6 a1i i1
8 neg1ne0 10
9 8 a1i i10
10 2z 2
11 10 a1i i2
12 id ii
13 expmulz 1102i12i=-12i
14 7 9 11 12 13 syl22anc i12i=-12i
15 neg1sqe1 12=1
16 15 oveq1i -12i=1i
17 1exp i1i=1
18 16 17 eqtrid i-12i=1
19 14 18 eqtrd i12i=1
20 19 adantl Ni12i=1
21 5 20 sylan9eqr NiN=2i1N=1
22 21 rexlimdva2 NiN=2i1N=1
23 22 imp NiN=2i1N=1
24 4 23 sylbi NEven1N=1