Metamath Proof Explorer


Theorem m1expo

Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021)

Ref Expression
Assertion m1expo N¬2N1N=1

Proof

Step Hyp Ref Expression
1 odd2np1 N¬2Nn2n+1=N
2 oveq2 N=2n+11N=12n+1
3 2 eqcoms 2n+1=N1N=12n+1
4 neg1cn 1
5 4 a1i n1
6 neg1ne0 10
7 6 a1i n10
8 2z 2
9 8 a1i n2
10 id nn
11 9 10 zmulcld n2n
12 5 7 11 expp1zd n12n+1=12n-1
13 m1expeven n12n=1
14 13 oveq1d n12n-1=1-1
15 4 mullidi 1-1=1
16 14 15 eqtrdi n12n-1=1
17 12 16 eqtrd n12n+1=1
18 17 adantl Nn12n+1=1
19 3 18 sylan9eqr Nn2n+1=N1N=1
20 19 rexlimdva2 Nn2n+1=N1N=1
21 1 20 sylbid N¬2N1N=1
22 21 imp N¬2N1N=1