Metamath Proof Explorer


Theorem m1modge3gt1

Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021)

Ref Expression
Assertion m1modge3gt1 M31<-1modM

Proof

Step Hyp Ref Expression
1 1p1e2 1+1=2
2 2p1e3 2+1=3
3 eluzle M33M
4 2 3 eqbrtrid M32+1M
5 2z 2
6 eluzelz M3M
7 zltp1le 2M2<M2+1M
8 5 6 7 sylancr M32<M2+1M
9 4 8 mpbird M32<M
10 1 9 eqbrtrid M31+1<M
11 1red M31
12 eluzelre M3M
13 11 11 12 ltaddsub2d M31+1<M1<M1
14 10 13 mpbid M31<M1
15 eluzge3nn M3M
16 m1modnnsub1 M-1modM=M1
17 15 16 syl M3-1modM=M1
18 14 17 breqtrrd M31<-1modM