Metamath Proof Explorer


Theorem m2cpmf

Description: The matrix transformation is a function from the matrices to the constant polynomial matrices. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S=NConstPolyMatR
m2cpm.t T=NmatToPolyMatR
m2cpm.a A=NMatR
m2cpm.b B=BaseA
Assertion m2cpmf NFinRRingT:BS

Proof

Step Hyp Ref Expression
1 m2cpm.s S=NConstPolyMatR
2 m2cpm.t T=NmatToPolyMatR
3 m2cpm.a A=NMatR
4 m2cpm.b B=BaseA
5 simpl NFinRRingNFin
6 5 5 jca NFinRRingNFinNFin
7 6 adantr NFinRRingmBNFinNFin
8 mpoexga NFinNFiniN,jNalgScPoly1RimjV
9 7 8 syl NFinRRingmBiN,jNalgScPoly1RimjV
10 eqid Poly1R=Poly1R
11 eqid algScPoly1R=algScPoly1R
12 2 3 4 10 11 mat2pmatfval NFinRRingT=mBiN,jNalgScPoly1Rimj
13 1 2 3 4 m2cpm NFinRRingbBTbS
14 13 3expa NFinRRingbBTbS
15 9 12 14 fmpt2d NFinRRingT:BS