Metamath Proof Explorer


Theorem madecut

Description: Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion madecut Could not format assertion : No typesetting found for |- ( ( ( A e. On /\ L < ( L |s R ) e. ( _Made ` A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 simplr AOnLsRLOldAROldALsR
2 ssltex1 LsRLV
3 1 2 syl AOnLsRLOldAROldALV
4 simprl AOnLsRLOldAROldALOldA
5 3 4 elpwd AOnLsRLOldAROldAL𝒫OldA
6 ssltex2 LsRRV
7 1 6 syl AOnLsRLOldAROldARV
8 simprr AOnLsRLOldAROldAROldA
9 7 8 elpwd AOnLsRLOldAROldAR𝒫OldA
10 eqidd AOnLsRLOldAROldAL|sR=L|sR
11 breq1 l=LlsrLsr
12 oveq1 l=Ll|sr=L|sr
13 12 eqeq1d l=Ll|sr=L|sRL|sr=L|sR
14 11 13 anbi12d l=Llsrl|sr=L|sRLsrL|sr=L|sR
15 breq2 r=RLsrLsR
16 oveq2 r=RL|sr=L|sR
17 16 eqeq1d r=RL|sr=L|sRL|sR=L|sR
18 15 17 anbi12d r=RLsrL|sr=L|sRLsRL|sR=L|sR
19 14 18 rspc2ev L𝒫OldAR𝒫OldALsRL|sR=L|sRl𝒫OldAr𝒫OldAlsrl|sr=L|sR
20 5 9 1 10 19 syl112anc AOnLsRLOldAROldAl𝒫OldAr𝒫OldAlsrl|sr=L|sR
21 elmade2 Could not format ( A e. On -> ( ( L |s R ) e. ( _Made ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l < ( ( L |s R ) e. ( _Made ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <
22 21 ad2antrr Could not format ( ( ( A e. On /\ L < ( ( L |s R ) e. ( _Made ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l < ( ( L |s R ) e. ( _Made ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <
23 20 22 mpbird Could not format ( ( ( A e. On /\ L < ( L |s R ) e. ( _Made ` A ) ) : No typesetting found for |- ( ( ( A e. On /\ L < ( L |s R ) e. ( _Made ` A ) ) with typecode |-