Metamath Proof Explorer


Theorem map0cor

Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses map0cor.1 φAV
map0cor.2 φBW
Assertion map0cor φB=A=ff:AB

Proof

Step Hyp Ref Expression
1 map0cor.1 φAV
2 map0cor.2 φBW
3 biid AA
4 3 necon2bbii A=¬A
5 4 imbi2i B=A=B=¬A
6 imnan B=¬A¬B=A
7 5 6 bitri B=A=¬B=A
8 map0g BWAVBA=B=A
9 8 notbid BWAV¬BA=¬B=A
10 7 9 bitr4id BWAVB=A=¬BA=
11 neq0 ¬BA=ffBA
12 11 a1i BWAV¬BA=ffBA
13 elmapg BWAVfBAf:AB
14 13 exbidv BWAVffBAff:AB
15 10 12 14 3bitrd BWAVB=A=ff:AB
16 2 1 15 syl2anc φB=A=ff:AB