Metamath Proof Explorer


Theorem mapd11

Description: The map defined by df-mapd is one-to-one. Property (c) of Baer p. 40. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapdord.h H=LHypK
mapdord.u U=DVecHKW
mapdord.s S=LSubSpU
mapdord.m M=mapdKW
mapdord.k φKHLWH
mapdord.x φXS
mapdord.y φYS
Assertion mapd11 φMX=MYX=Y

Proof

Step Hyp Ref Expression
1 mapdord.h H=LHypK
2 mapdord.u U=DVecHKW
3 mapdord.s S=LSubSpU
4 mapdord.m M=mapdKW
5 mapdord.k φKHLWH
6 mapdord.x φXS
7 mapdord.y φYS
8 1 2 3 4 5 6 7 mapdord φMXMYXY
9 1 2 3 4 5 7 6 mapdord φMYMXYX
10 8 9 anbi12d φMXMYMYMXXYYX
11 eqss MX=MYMXMYMYMX
12 eqss X=YXYYX
13 10 11 12 3bitr4g φMX=MYX=Y