Metamath Proof Explorer


Theorem mapdheq2

Description: Lemmma for ~? mapdh . One direction of part (2) in Baer p. 45. (Contributed by NM, 4-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdhe.y φ Y V 0 ˙
mapdhe.g φ G D
mapdh.ne2 φ N X N Y
Assertion mapdheq2 φ I X F Y = G I Y G X = F

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdhe.y φ Y V 0 ˙
19 mapdhe.g φ G D
20 mapdh.ne2 φ N X N Y
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G
22 16 adantr φ M N Y = J G M N X - ˙ Y = J F R G M N X = J F
23 3 5 14 dvhlmod φ U LMod
24 17 eldifad φ X V
25 18 eldifad φ Y V
26 6 7 9 23 24 25 lspsnsub φ N X - ˙ Y = N Y - ˙ X
27 26 fveq2d φ M N X - ˙ Y = M N Y - ˙ X
28 3 10 14 lcdlmod φ C LMod
29 11 12 13 28 15 19 lspsnsub φ J F R G = J G R F
30 27 29 eqeq12d φ M N X - ˙ Y = J F R G M N Y - ˙ X = J G R F
31 30 biimpa φ M N X - ˙ Y = J F R G M N Y - ˙ X = J G R F
32 31 adantrl φ M N Y = J G M N X - ˙ Y = J F R G M N Y - ˙ X = J G R F
33 14 adantr φ M N Y = J G M N X - ˙ Y = J F R G K HL W H
34 19 adantr φ M N Y = J G M N X - ˙ Y = J F R G G D
35 simprl φ M N Y = J G M N X - ˙ Y = J F R G M N Y = J G
36 18 adantr φ M N Y = J G M N X - ˙ Y = J F R G Y V 0 ˙
37 17 adantr φ M N Y = J G M N X - ˙ Y = J F R G X V 0 ˙
38 15 adantr φ M N Y = J G M N X - ˙ Y = J F R G F D
39 20 necomd φ N Y N X
40 39 adantr φ M N Y = J G M N X - ˙ Y = J F R G N Y N X
41 1 2 3 4 5 6 7 8 9 10 11 12 13 33 34 35 36 37 38 40 mapdheq φ M N Y = J G M N X - ˙ Y = J F R G I Y G X = F M N X = J F M N Y - ˙ X = J G R F
42 22 32 41 mpbir2and φ M N Y = J G M N X - ˙ Y = J F R G I Y G X = F
43 42 ex φ M N Y = J G M N X - ˙ Y = J F R G I Y G X = F
44 21 43 sylbid φ I X F Y = G I Y G X = F