Metamath Proof Explorer


Theorem mapdsn2

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses mapdsn.h H=LHypK
mapdsn.o O=ocHKW
mapdsn.m M=mapdKW
mapdsn.u U=DVecHKW
mapdsn.v V=BaseU
mapdsn.n N=LSpanU
mapdsn.f F=LFnlU
mapdsn.l L=LKerU
mapdsn.k φKHLWH
mapdsn.x φXV
mapdsn2.e φLG=OX
Assertion mapdsn2 φMNX=fF|LGLf

Proof

Step Hyp Ref Expression
1 mapdsn.h H=LHypK
2 mapdsn.o O=ocHKW
3 mapdsn.m M=mapdKW
4 mapdsn.u U=DVecHKW
5 mapdsn.v V=BaseU
6 mapdsn.n N=LSpanU
7 mapdsn.f F=LFnlU
8 mapdsn.l L=LKerU
9 mapdsn.k φKHLWH
10 mapdsn.x φXV
11 mapdsn2.e φLG=OX
12 1 2 3 4 5 6 7 8 9 10 mapdsn φMNX=fF|OXLf
13 11 sseq1d φLGLfOXLf
14 13 rabbidv φfF|LGLf=fF|OXLf
15 12 14 eqtr4d φMNX=fF|LGLf