Metamath Proof Explorer


Theorem mapdsord

Description: Strong ordering property of themap defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdcnvcl.h H=LHypK
mapdcnvcl.m M=mapdKW
mapdcnvcl.u U=DVecHKW
mapdcnvcl.s S=LSubSpU
mapdcnvcl.k φKHLWH
mapdcl.x φXS
mapdsord.x φYS
Assertion mapdsord φMXMYXY

Proof

Step Hyp Ref Expression
1 mapdcnvcl.h H=LHypK
2 mapdcnvcl.m M=mapdKW
3 mapdcnvcl.u U=DVecHKW
4 mapdcnvcl.s S=LSubSpU
5 mapdcnvcl.k φKHLWH
6 mapdcl.x φXS
7 mapdsord.x φYS
8 1 3 4 2 5 6 7 mapdord φMXMYXY
9 1 3 4 2 5 6 7 mapd11 φMX=MYX=Y
10 9 necon3bid φMXMYXY
11 8 10 anbi12d φMXMYMXMYXYXY
12 df-pss MXMYMXMYMXMY
13 df-pss XYXYXY
14 11 12 13 3bitr4g φMXMYXY