Metamath Proof Explorer


Theorem mapfzcons

Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 M=N+1
Assertion mapfzcons N0AB1NCBAMCB1M

Proof

Step Hyp Ref Expression
1 mapfzcons.1 M=N+1
2 simp2 N0AB1NCBAB1N
3 elmapex AB1NBV1NV
4 3 simpld AB1NBV
5 4 3ad2ant2 N0AB1NCBBV
6 ovex 1NV
7 elmapg BV1NVAB1NA:1NB
8 5 6 7 sylancl N0AB1NCBAB1NA:1NB
9 2 8 mpbid N0AB1NCBA:1NB
10 ovex N+1V
11 simp3 N0AB1NCBCB
12 f1osng N+1VCBN+1C:N+11-1 ontoC
13 10 11 12 sylancr N0AB1NCBN+1C:N+11-1 ontoC
14 f1of N+1C:N+11-1 ontoCN+1C:N+1C
15 13 14 syl N0AB1NCBN+1C:N+1C
16 snssi CBCB
17 16 3ad2ant3 N0AB1NCBCB
18 15 17 fssd N0AB1NCBN+1C:N+1B
19 fzp1disj 1NN+1=
20 19 a1i N0AB1NCB1NN+1=
21 fun A:1NBN+1C:N+1B1NN+1=AN+1C:1NN+1BB
22 9 18 20 21 syl21anc N0AB1NCBAN+1C:1NN+1BB
23 1z 1
24 simp1 N0AB1NCBN0
25 nn0uz 0=0
26 1m1e0 11=0
27 26 fveq2i 11=0
28 25 27 eqtr4i 0=11
29 24 28 eleqtrdi N0AB1NCBN11
30 fzsuc2 1N111N+1=1NN+1
31 23 29 30 sylancr N0AB1NCB1N+1=1NN+1
32 31 eqcomd N0AB1NCB1NN+1=1N+1
33 unidm BB=B
34 33 a1i N0AB1NCBBB=B
35 32 34 feq23d N0AB1NCBAN+1C:1NN+1BBAN+1C:1N+1B
36 22 35 mpbid N0AB1NCBAN+1C:1N+1B
37 ovex 1N+1V
38 elmapg BV1N+1VAN+1CB1N+1AN+1C:1N+1B
39 5 37 38 sylancl N0AB1NCBAN+1CB1N+1AN+1C:1N+1B
40 36 39 mpbird N0AB1NCBAN+1CB1N+1
41 1 opeq1i MC=N+1C
42 41 sneqi MC=N+1C
43 42 uneq2i AMC=AN+1C
44 1 oveq2i 1M=1N+1
45 44 oveq2i B1M=B1N+1
46 40 43 45 3eltr4g N0AB1NCBAMCB1M