Metamath Proof Explorer


Theorem mapfzcons2

Description: Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 M=N+1
Assertion mapfzcons2 AB1NCBAMCM=C

Proof

Step Hyp Ref Expression
1 mapfzcons.1 M=N+1
2 ovex N+1V
3 1 2 eqeltri MV
4 3 a1i AB1NCBMV
5 elex CBCV
6 5 adantl AB1NCBCV
7 elmapi AB1NA:1NB
8 7 fdmd AB1NdomA=1N
9 8 adantr AB1NCBdomA=1N
10 9 ineq1d AB1NCBdomAM=1NM
11 1 sneqi M=N+1
12 11 ineq2i 1NM=1NN+1
13 fzp1disj 1NN+1=
14 12 13 eqtri 1NM=
15 10 14 eqtrdi AB1NCBdomAM=
16 disjsn domAM=¬MdomA
17 15 16 sylib AB1NCB¬MdomA
18 fsnunfv MVCV¬MdomAAMCM=C
19 4 6 17 18 syl3anc AB1NCBAMCM=C