Metamath Proof Explorer


Theorem mappsrpr

Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis mappsrpr.2 C 𝑹
Assertion mappsrpr C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 A 1 𝑷 ~ 𝑹 A 𝑷

Proof

Step Hyp Ref Expression
1 mappsrpr.2 C 𝑹
2 df-m1r -1 𝑹 = 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹
3 2 breq1i -1 𝑹 < 𝑹 A 1 𝑷 ~ 𝑹 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 < 𝑹 A 1 𝑷 ~ 𝑹
4 ltsrpr 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 < 𝑹 A 1 𝑷 ~ 𝑹 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A
5 3 4 bitri -1 𝑹 < 𝑹 A 1 𝑷 ~ 𝑹 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A
6 ltasr C 𝑹 -1 𝑹 < 𝑹 A 1 𝑷 ~ 𝑹 C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 A 1 𝑷 ~ 𝑹
7 1 6 ax-mp -1 𝑹 < 𝑹 A 1 𝑷 ~ 𝑹 C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 A 1 𝑷 ~ 𝑹
8 ltrelpr < 𝑷 𝑷 × 𝑷
9 8 brel 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A 𝑷
10 dmplp dom + 𝑷 = 𝑷 × 𝑷
11 0npr ¬ 𝑷
12 10 11 ndmovrcl 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 A 𝑷
13 12 simprd 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A 𝑷 A 𝑷
14 9 13 simpl2im 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A A 𝑷
15 1pr 1 𝑷 𝑷
16 addclpr 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
17 15 15 16 mp2an 1 𝑷 + 𝑷 1 𝑷 𝑷
18 ltaddpr 1 𝑷 + 𝑷 1 𝑷 𝑷 A 𝑷 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A
19 17 18 mpan A 𝑷 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A
20 14 19 impbii 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 A A 𝑷
21 5 7 20 3bitr3i C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 A 1 𝑷 ~ 𝑹 A 𝑷