Metamath Proof Explorer


Theorem marepvfval

Description: First substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses marepvfval.a A=NMatR
marepvfval.b B=BaseA
marepvfval.q Q=NmatRepVR
marepvfval.v V=BaseRN
Assertion marepvfval Q=mB,vVkNiN,jNifj=kviimj

Proof

Step Hyp Ref Expression
1 marepvfval.a A=NMatR
2 marepvfval.b B=BaseA
3 marepvfval.q Q=NmatRepVR
4 marepvfval.v V=BaseRN
5 2 fvexi BV
6 4 ovexi VV
7 6 a1i NVRVVV
8 mpoexga BVVVmB,vVkNiN,jNifj=kviimjV
9 5 7 8 sylancr NVRVmB,vVkNiN,jNifj=kviimjV
10 oveq12 n=Nr=RnMatr=NMatR
11 10 1 eqtr4di n=Nr=RnMatr=A
12 11 fveq2d n=Nr=RBasenMatr=BaseA
13 12 2 eqtr4di n=Nr=RBasenMatr=B
14 fveq2 r=RBaser=BaseR
15 14 adantl n=Nr=RBaser=BaseR
16 simpl n=Nr=Rn=N
17 15 16 oveq12d n=Nr=RBasern=BaseRN
18 17 4 eqtr4di n=Nr=RBasern=V
19 eqidd n=Nr=Rifj=kviimj=ifj=kviimj
20 16 16 19 mpoeq123dv n=Nr=Rin,jnifj=kviimj=iN,jNifj=kviimj
21 16 20 mpteq12dv n=Nr=Rknin,jnifj=kviimj=kNiN,jNifj=kviimj
22 13 18 21 mpoeq123dv n=Nr=RmBasenMatr,vBasernknin,jnifj=kviimj=mB,vVkNiN,jNifj=kviimj
23 df-marepv matRepV=nV,rVmBasenMatr,vBasernknin,jnifj=kviimj
24 22 23 ovmpoga NVRVmB,vVkNiN,jNifj=kviimjVNmatRepVR=mB,vVkNiN,jNifj=kviimj
25 9 24 mpd3an3 NVRVNmatRepVR=mB,vVkNiN,jNifj=kviimj
26 23 mpondm0 ¬NVRVNmatRepVR=
27 1 fveq2i BaseA=BaseNMatR
28 2 27 eqtri B=BaseNMatR
29 matbas0pc ¬NVRVBaseNMatR=
30 28 29 eqtrid ¬NVRVB=
31 30 orcd ¬NVRVB=V=
32 0mpo0 B=V=mB,vVkNiN,jNifj=kviimj=
33 31 32 syl ¬NVRVmB,vVkNiN,jNifj=kviimj=
34 26 33 eqtr4d ¬NVRVNmatRepVR=mB,vVkNiN,jNifj=kviimj
35 25 34 pm2.61i NmatRepVR=mB,vVkNiN,jNifj=kviimj
36 3 35 eqtri Q=mB,vVkNiN,jNifj=kviimj