| Step |
Hyp |
Ref |
Expression |
| 1 |
|
marepvfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
marepvfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
marepvfval.q |
⊢ 𝑄 = ( 𝑁 matRepV 𝑅 ) |
| 4 |
|
marepvfval.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
| 5 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 6 |
4
|
ovexi |
⊢ 𝑉 ∈ V |
| 7 |
6
|
a1i |
⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝑉 ∈ V ) |
| 8 |
|
mpoexga |
⊢ ( ( 𝐵 ∈ V ∧ 𝑉 ∈ V ) → ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ∈ V ) |
| 9 |
5 7 8
|
sylancr |
⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ∈ V ) |
| 10 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
| 11 |
10 1
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
| 13 |
12 2
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 16 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
| 17 |
15 16
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
| 18 |
17 4
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) = 𝑉 ) |
| 19 |
|
eqidd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) = if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) |
| 20 |
16 16 19
|
mpoeq123dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) |
| 21 |
16 20
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
| 22 |
13 18 21
|
mpoeq123dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) = ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
| 23 |
|
df-marepv |
⊢ matRepV = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑟 ) ↑m 𝑛 ) ↦ ( 𝑘 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
| 24 |
22 23
|
ovmpoga |
⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ∧ ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ∈ V ) → ( 𝑁 matRepV 𝑅 ) = ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
| 25 |
9 24
|
mpd3an3 |
⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 matRepV 𝑅 ) = ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
| 26 |
23
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 matRepV 𝑅 ) = ∅ ) |
| 27 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 28 |
2 27
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 29 |
|
matbas0pc |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ∅ ) |
| 30 |
28 29
|
eqtrid |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
| 31 |
30
|
orcd |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐵 = ∅ ∨ 𝑉 = ∅ ) ) |
| 32 |
|
0mpo0 |
⊢ ( ( 𝐵 = ∅ ∨ 𝑉 = ∅ ) → ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) = ∅ ) |
| 33 |
31 32
|
syl |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) = ∅ ) |
| 34 |
26 33
|
eqtr4d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 matRepV 𝑅 ) = ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
| 35 |
25 34
|
pm2.61i |
⊢ ( 𝑁 matRepV 𝑅 ) = ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
| 36 |
3 35
|
eqtri |
⊢ 𝑄 = ( 𝑚 ∈ 𝐵 , 𝑣 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑣 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |