Metamath Proof Explorer


Theorem marepvval

Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvfval.a A=NMatR
marepvfval.b B=BaseA
marepvfval.q Q=NmatRepVR
marepvfval.v V=BaseRN
Assertion marepvval MBCVKNMQCK=iN,jNifj=KCiiMj

Proof

Step Hyp Ref Expression
1 marepvfval.a A=NMatR
2 marepvfval.b B=BaseA
3 marepvfval.q Q=NmatRepVR
4 marepvfval.v V=BaseRN
5 1 2 3 4 marepvval0 MBCVMQC=kNiN,jNifj=kCiiMj
6 5 3adant3 MBCVKNMQC=kNiN,jNifj=kCiiMj
7 6 fveq1d MBCVKNMQCK=kNiN,jNifj=kCiiMjK
8 eqid kNiN,jNifj=kCiiMj=kNiN,jNifj=kCiiMj
9 eqeq2 k=Kj=kj=K
10 9 ifbid k=Kifj=kCiiMj=ifj=KCiiMj
11 10 mpoeq3dv k=KiN,jNifj=kCiiMj=iN,jNifj=KCiiMj
12 simp3 MBCVKNKN
13 1 2 matrcl MBNFinRV
14 13 simpld MBNFin
15 14 14 jca MBNFinNFin
16 15 3ad2ant1 MBCVKNNFinNFin
17 mpoexga NFinNFiniN,jNifj=KCiiMjV
18 16 17 syl MBCVKNiN,jNifj=KCiiMjV
19 8 11 12 18 fvmptd3 MBCVKNkNiN,jNifj=kCiiMjK=iN,jNifj=KCiiMj
20 7 19 eqtrd MBCVKNMQCK=iN,jNifj=KCiiMj