Metamath Proof Explorer


Theorem marrepval0

Description: Second substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019)

Ref Expression
Hypotheses marrepfval.a A = N Mat R
marrepfval.b B = Base A
marrepfval.q Q = N matRRep R
marrepfval.z 0 ˙ = 0 R
Assertion marrepval0 M B S Base R M Q S = k N , l N i N , j N if i = k if j = l S 0 ˙ i M j

Proof

Step Hyp Ref Expression
1 marrepfval.a A = N Mat R
2 marrepfval.b B = Base A
3 marrepfval.q Q = N matRRep R
4 marrepfval.z 0 ˙ = 0 R
5 1 2 matrcl M B N Fin R V
6 5 simpld M B N Fin
7 6 6 jca M B N Fin N Fin
8 7 adantr M B S Base R N Fin N Fin
9 mpoexga N Fin N Fin k N , l N i N , j N if i = k if j = l S 0 ˙ i M j V
10 8 9 syl M B S Base R k N , l N i N , j N if i = k if j = l S 0 ˙ i M j V
11 ifeq1 s = S if j = l s 0 ˙ = if j = l S 0 ˙
12 11 adantl m = M s = S if j = l s 0 ˙ = if j = l S 0 ˙
13 oveq m = M i m j = i M j
14 13 adantr m = M s = S i m j = i M j
15 12 14 ifeq12d m = M s = S if i = k if j = l s 0 ˙ i m j = if i = k if j = l S 0 ˙ i M j
16 15 mpoeq3dv m = M s = S i N , j N if i = k if j = l s 0 ˙ i m j = i N , j N if i = k if j = l S 0 ˙ i M j
17 16 mpoeq3dv m = M s = S k N , l N i N , j N if i = k if j = l s 0 ˙ i m j = k N , l N i N , j N if i = k if j = l S 0 ˙ i M j
18 1 2 3 4 marrepfval Q = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j
19 17 18 ovmpoga M B S Base R k N , l N i N , j N if i = k if j = l S 0 ˙ i M j V M Q S = k N , l N i N , j N if i = k if j = l S 0 ˙ i M j
20 10 19 mpd3an3 M B S Base R M Q S = k N , l N i N , j N if i = k if j = l S 0 ˙ i M j