Metamath Proof Explorer


Theorem mat2pmatval

Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses mat2pmatfval.t T=NmatToPolyMatR
mat2pmatfval.a A=NMatR
mat2pmatfval.b B=BaseA
mat2pmatfval.p P=Poly1R
mat2pmatfval.s S=algScP
Assertion mat2pmatval NFinRVMBTM=xN,yNSxMy

Proof

Step Hyp Ref Expression
1 mat2pmatfval.t T=NmatToPolyMatR
2 mat2pmatfval.a A=NMatR
3 mat2pmatfval.b B=BaseA
4 mat2pmatfval.p P=Poly1R
5 mat2pmatfval.s S=algScP
6 1 2 3 4 5 mat2pmatfval NFinRVT=mBxN,yNSxmy
7 6 3adant3 NFinRVMBT=mBxN,yNSxmy
8 oveq m=Mxmy=xMy
9 8 fveq2d m=MSxmy=SxMy
10 9 mpoeq3dv m=MxN,yNSxmy=xN,yNSxMy
11 10 adantl NFinRVMBm=MxN,yNSxmy=xN,yNSxMy
12 simp3 NFinRVMBMB
13 simp1 NFinRVMBNFin
14 mpoexga NFinNFinxN,yNSxMyV
15 13 13 14 syl2anc NFinRVMBxN,yNSxMyV
16 7 11 12 15 fvmptd NFinRVMBTM=xN,yNSxMy