Metamath Proof Explorer


Theorem matgsumcl

Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses madetsumid.a A=NMatR
madetsumid.b B=BaseA
madetsumid.u U=mulGrpR
Assertion matgsumcl RCRingMBUrNrMrBaseR

Proof

Step Hyp Ref Expression
1 madetsumid.a A=NMatR
2 madetsumid.b B=BaseA
3 madetsumid.u U=mulGrpR
4 eqid BaseR=BaseR
5 3 4 mgpbas BaseR=BaseU
6 3 crngmgp RCRingUCMnd
7 6 adantr RCRingMBUCMnd
8 1 2 matrcl MBNFinRV
9 8 adantl RCRingMBNFinRV
10 9 simpld RCRingMBNFin
11 simpr RCRingMBMB
12 1 4 2 matbas2i MBMBaseRN×N
13 elmapi MBaseRN×NM:N×NBaseR
14 11 12 13 3syl RCRingMBM:N×NBaseR
15 14 adantr RCRingMBrNM:N×NBaseR
16 simpr RCRingMBrNrN
17 15 16 16 fovcdmd RCRingMBrNrMrBaseR
18 17 ralrimiva RCRingMBrNrMrBaseR
19 5 7 10 18 gsummptcl RCRingMBUrNrMrBaseR