Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | maxidlnr.1 | |
|
maxidlnr.2 | |
||
Assertion | maxidlmax | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlnr.1 | |
|
2 | maxidlnr.2 | |
|
3 | 1 2 | ismaxidl | |
4 | 3 | biimpa | |
5 | 4 | simp3d | |
6 | sseq2 | |
|
7 | eqeq1 | |
|
8 | eqeq1 | |
|
9 | 7 8 | orbi12d | |
10 | 6 9 | imbi12d | |
11 | 10 | rspcva | |
12 | 5 11 | sylan2 | |
13 | 12 | ancoms | |
14 | 13 | impr | |