Metamath Proof Explorer


Theorem maxidlmax

Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses maxidlnr.1 G=1stR
maxidlnr.2 X=ranG
Assertion maxidlmax RRingOpsMMaxIdlRIIdlRMII=MI=X

Proof

Step Hyp Ref Expression
1 maxidlnr.1 G=1stR
2 maxidlnr.2 X=ranG
3 1 2 ismaxidl RRingOpsMMaxIdlRMIdlRMXjIdlRMjj=Mj=X
4 3 biimpa RRingOpsMMaxIdlRMIdlRMXjIdlRMjj=Mj=X
5 4 simp3d RRingOpsMMaxIdlRjIdlRMjj=Mj=X
6 sseq2 j=IMjMI
7 eqeq1 j=Ij=MI=M
8 eqeq1 j=Ij=XI=X
9 7 8 orbi12d j=Ij=Mj=XI=MI=X
10 6 9 imbi12d j=IMjj=Mj=XMII=MI=X
11 10 rspcva IIdlRjIdlRMjj=Mj=XMII=MI=X
12 5 11 sylan2 IIdlRRRingOpsMMaxIdlRMII=MI=X
13 12 ancoms RRingOpsMMaxIdlRIIdlRMII=MI=X
14 13 impr RRingOpsMMaxIdlRIIdlRMII=MI=X