Metamath Proof Explorer


Theorem mayetes3i

Description: Mayet's equation E^*_3, derived from E_3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of Mayet3 p. 1240. (Contributed by NM, 10-May-2009) (New usage is discouraged.)

Ref Expression
Hypotheses mayetes3.a AC
mayetes3.b BC
mayetes3.c CC
mayetes3.d DC
mayetes3.f FC
mayetes3.g GC
mayetes3.r RC
mayetes3.ac AC
mayetes3.af AF
mayetes3.cf CF
mayetes3.ab AB
mayetes3.cd CD
mayetes3.fg FG
mayetes3.rx RX
mayetes3.x X=ACF
mayetes3.y Y=ABCDFG
mayetes3.z Z=BDG
Assertion mayetes3i XRYZR

Proof

Step Hyp Ref Expression
1 mayetes3.a AC
2 mayetes3.b BC
3 mayetes3.c CC
4 mayetes3.d DC
5 mayetes3.f FC
6 mayetes3.g GC
7 mayetes3.r RC
8 mayetes3.ac AC
9 mayetes3.af AF
10 mayetes3.cf CF
11 mayetes3.ab AB
12 mayetes3.cd CD
13 mayetes3.fg FG
14 mayetes3.rx RX
15 mayetes3.x X=ACF
16 mayetes3.y Y=ABCDFG
17 mayetes3.z Z=BDG
18 1 3 chjcli ACC
19 18 5 chjcli ACFC
20 19 7 chjcomi ACFR=RACF
21 20 eqimssi ACFRRACF
22 1 2 chjcli ABC
23 22 7 chub1i ABABR
24 1 2 7 chjassi ABR=ABR
25 23 24 sseqtri ABABR
26 2 7 chjcli BRC
27 1 26 chjcli ABRC
28 27 7 chub2i ABRRABR
29 25 28 sstri ABRABR
30 3 4 chjcli CDC
31 30 7 chub1i CDCDR
32 3 4 7 chjassi CDR=CDR
33 31 32 sseqtri CDCDR
34 4 7 chjcli DRC
35 3 34 chjcli CDRC
36 35 7 chub2i CDRRCDR
37 33 36 sstri CDRCDR
38 ss2in ABRABRCDRCDRABCDRABRRCDR
39 29 37 38 mp2an ABCDRABRRCDR
40 5 6 chjcli FGC
41 40 7 chub1i FGFGR
42 5 6 7 chjassi FGR=FGR
43 41 42 sseqtri FGFGR
44 6 7 chjcli GRC
45 5 44 chjcli FGRC
46 45 7 chub2i FGRRFGR
47 43 46 sstri FGRFGR
48 ss2in ABCDRABRRCDRFGRFGRABCDFGRABRRCDRRFGR
49 39 47 48 mp2an ABCDFGRABRRCDRRFGR
50 ss2in ACFRRACFABCDFGRABRRCDRRFGRACFRABCDFGRACFRABRRCDRRFGR
51 21 49 50 mp2an ACFRABCDFGRACFRABRRCDRRFGR
52 27 35 chincli ABRCDRC
53 52 45 chincli ABRCDRFGRC
54 15 19 eqeltri XC
55 54 choccli XC
56 7 55 14 lecmii R𝐶X
57 7 54 cmcm2i R𝐶XR𝐶X
58 56 57 mpbir R𝐶X
59 58 15 breqtri R𝐶ACF
60 7 2 chub2i RBR
61 26 1 chub2i BRABR
62 60 61 sstri RABR
63 7 27 62 lecmii R𝐶ABR
64 7 4 chub2i RDR
65 34 3 chub2i DRCDR
66 64 65 sstri RCDR
67 7 35 66 lecmii R𝐶CDR
68 7 27 35 63 67 cm2mi R𝐶ABRCDR
69 7 6 chub2i RGR
70 44 5 chub2i GRFGR
71 69 70 sstri RFGR
72 7 45 71 lecmii R𝐶FGR
73 7 52 45 68 72 cm2mi R𝐶ABRCDRFGR
74 7 19 53 59 73 fh3i RACFABRCDRFGR=RACFRABRCDRFGR
75 7 52 45 68 72 fh3i RABRCDRFGR=RABRCDRRFGR
76 7 27 35 63 67 fh3i RABRCDR=RABRRCDR
77 76 ineq1i RABRCDRRFGR=RABRRCDRRFGR
78 75 77 eqtri RABRCDRFGR=RABRRCDRRFGR
79 78 ineq2i RACFRABRCDRFGR=RACFRABRRCDRRFGR
80 74 79 eqtr2i RACFRABRRCDRRFGR=RACFABRCDRFGR
81 51 80 sseqtri ACFRABCDFGRACFABRCDRFGR
82 2 4 chjcli BDC
83 82 6 chjcli BDGC
84 7 83 chub2i RBDGR
85 1 3 chub1i AAC
86 18 5 chub1i ACACF
87 86 15 sseqtrri ACX
88 85 87 sstri AX
89 1 54 chsscon3i AXXA
90 88 89 mpbi XA
91 14 90 sstri RA
92 7 1 chsscon2i RAAR
93 91 92 mpbi AR
94 11 93 ssini ABR
95 2 7 chdmj1i BR=BR
96 94 95 sseqtrri ABR
97 3 1 chub2i CAC
98 97 87 sstri CX
99 3 54 chsscon3i CXXC
100 98 99 mpbi XC
101 14 100 sstri RC
102 7 3 chsscon2i RCCR
103 101 102 mpbi CR
104 12 103 ssini CDR
105 4 7 chdmj1i DR=DR
106 104 105 sseqtrri CDR
107 5 18 chub2i FACF
108 107 15 sseqtrri FX
109 5 54 chsscon3i FXXF
110 108 109 mpbi XF
111 14 110 sstri RF
112 7 5 chsscon2i RFFR
113 111 112 mpbi FR
114 13 113 ssini FGR
115 6 7 chdmj1i GR=GR
116 114 115 sseqtrri FGR
117 eqid ACF=ACF
118 eqid ABRCDRFGR=ABRCDRFGR
119 82 6 7 chjjdiri BDGR=BDRGR
120 2 4 7 chjjdiri BDR=BRDR
121 120 oveq1i BDRGR=BRDRGR
122 119 121 eqtri BDGR=BRDRGR
123 1 26 3 34 5 44 8 9 10 96 106 116 117 118 122 mayete3i ACFABRCDRFGRBDGR
124 19 53 chincli ACFABRCDRFGRC
125 83 7 chjcli BDGRC
126 7 124 125 chlubii RBDGRACFABRCDRFGRBDGRRACFABRCDRFGRBDGR
127 84 123 126 mp2an RACFABRCDRFGRBDGR
128 81 127 sstri ACFRABCDFGBDGR
129 15 oveq1i XR=ACFR
130 129 16 ineq12i XRY=ACFRABCDFG
131 17 oveq1i ZR=BDGR
132 128 130 131 3sstr4i XRYZR