Metamath Proof Explorer


Theorem mbfdm2

Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypotheses mbfmptcl.1 φxABMblFn
mbfmptcl.2 φxABV
Assertion mbfdm2 φAdomvol

Proof

Step Hyp Ref Expression
1 mbfmptcl.1 φxABMblFn
2 mbfmptcl.2 φxABV
3 2 ralrimiva φxABV
4 dmmptg xABVdomxAB=A
5 3 4 syl φdomxAB=A
6 mbfdm xABMblFndomxABdomvol
7 1 6 syl φdomxABdomvol
8 5 7 eqeltrrd φAdomvol