Metamath Proof Explorer


Theorem mbfmcnvima

Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017)

Ref Expression
Hypotheses mbfmf.1 φSransigAlgebra
mbfmf.2 φTransigAlgebra
mbfmf.3 φFSMblFnμT
mbfmcnvima.4 φAT
Assertion mbfmcnvima φF-1AS

Proof

Step Hyp Ref Expression
1 mbfmf.1 φSransigAlgebra
2 mbfmf.2 φTransigAlgebra
3 mbfmf.3 φFSMblFnμT
4 mbfmcnvima.4 φAT
5 imaeq2 x=AF-1x=F-1A
6 5 eleq1d x=AF-1xSF-1AS
7 1 2 ismbfm φFSMblFnμTFTSxTF-1xS
8 3 7 mpbid φFTSxTF-1xS
9 8 simprd φxTF-1xS
10 6 9 4 rspcdva φF-1AS