Metamath Proof Explorer


Theorem mbfmcnvima

Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017)

Ref Expression
Hypotheses mbfmf.1 φ S ran sigAlgebra
mbfmf.2 φ T ran sigAlgebra
mbfmf.3 φ F S MblFn μ T
mbfmcnvima.4 φ A T
Assertion mbfmcnvima φ F -1 A S

Proof

Step Hyp Ref Expression
1 mbfmf.1 φ S ran sigAlgebra
2 mbfmf.2 φ T ran sigAlgebra
3 mbfmf.3 φ F S MblFn μ T
4 mbfmcnvima.4 φ A T
5 imaeq2 x = A F -1 x = F -1 A
6 5 eleq1d x = A F -1 x S F -1 A S
7 1 2 ismbfm φ F S MblFn μ T F T S x T F -1 x S
8 3 7 mpbid φ F T S x T F -1 x S
9 8 simprd φ x T F -1 x S
10 6 9 4 rspcdva φ F -1 A S