Metamath Proof Explorer


Theorem mbfpsssmf

Description: Real-valued measurable functions are a proper subset of sigma-measurable functions (w.r.t. the Lebesgue measure on the reals). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis mbfpsssmf.1 S=domvol
Assertion mbfpsssmf MblFn𝑝𝑚SMblFnS

Proof

Step Hyp Ref Expression
1 mbfpsssmf.1 S=domvol
2 elinel1 fMblFn𝑝𝑚fMblFn
3 elinel2 fMblFn𝑝𝑚f𝑝𝑚
4 elpmrn f𝑝𝑚ranf
5 3 4 syl fMblFn𝑝𝑚ranf
6 2 5 1 mbfresmf fMblFn𝑝𝑚fSMblFnS
7 6 ssriv MblFn𝑝𝑚SMblFnS
8 1 nsssmfmbf ¬SMblFnSMblFn
9 2 ssriv MblFn𝑝𝑚MblFn
10 nsstr ¬SMblFnSMblFnMblFn𝑝𝑚MblFn¬SMblFnSMblFn𝑝𝑚
11 8 9 10 mp2an ¬SMblFnSMblFn𝑝𝑚
12 7 11 pm3.2i MblFn𝑝𝑚SMblFnS¬SMblFnSMblFn𝑝𝑚
13 dfpss3 MblFn𝑝𝑚SMblFnSMblFn𝑝𝑚SMblFnS¬SMblFnSMblFn𝑝𝑚
14 12 13 mpbir MblFn𝑝𝑚SMblFnS