Metamath Proof Explorer


Theorem mbfres2cn

Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. Similar to mbfres2 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses mbfres2cn.f φF:A
mbfres2cn.b φFBMblFn
mbfres2cn.c φFCMblFn
mbfres2cn.a φBC=A
Assertion mbfres2cn φFMblFn

Proof

Step Hyp Ref Expression
1 mbfres2cn.f φF:A
2 mbfres2cn.b φFBMblFn
3 mbfres2cn.c φFCMblFn
4 mbfres2cn.a φBC=A
5 ref :
6 fco :F:AF:A
7 5 1 6 sylancr φF:A
8 resco FB=FB
9 fresin F:AFB:AB
10 ismbfcn FB:ABFBMblFnFBMblFnFBMblFn
11 1 9 10 3syl φFBMblFnFBMblFnFBMblFn
12 2 11 mpbid φFBMblFnFBMblFn
13 12 simpld φFBMblFn
14 8 13 eqeltrid φFBMblFn
15 resco FC=FC
16 fresin F:AFC:AC
17 ismbfcn FC:ACFCMblFnFCMblFnFCMblFn
18 1 16 17 3syl φFCMblFnFCMblFnFCMblFn
19 3 18 mpbid φFCMblFnFCMblFn
20 19 simpld φFCMblFn
21 15 20 eqeltrid φFCMblFn
22 7 14 21 4 mbfres2 φFMblFn
23 imf :
24 fco :F:AF:A
25 23 1 24 sylancr φF:A
26 resco FB=FB
27 12 simprd φFBMblFn
28 26 27 eqeltrid φFBMblFn
29 resco FC=FC
30 19 simprd φFCMblFn
31 29 30 eqeltrid φFCMblFn
32 25 28 31 4 mbfres2 φFMblFn
33 ismbfcn F:AFMblFnFMblFnFMblFn
34 1 33 syl φFMblFnFMblFnFMblFn
35 22 32 34 mpbir2and φFMblFn