Metamath Proof Explorer


Theorem mddmd

Description: The modular pair property expressed in terms of the dual modular pair property. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion mddmd ACBCA𝑀BA𝑀*B

Proof

Step Hyp Ref Expression
1 choccl ACAC
2 choccl BCBC
3 dmdmd ACBCA𝑀*BA𝑀B
4 1 2 3 syl2an ACBCA𝑀*BA𝑀B
5 ococ ACA=A
6 ococ BCB=B
7 5 6 breqan12d ACBCA𝑀BA𝑀B
8 4 7 bitr2d ACBCA𝑀BA𝑀*B