| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdslmd.1 |  | 
						
							| 2 |  | mdslmd.2 |  | 
						
							| 3 |  | mdslmd.3 |  | 
						
							| 4 |  | mdslmd.4 |  | 
						
							| 5 |  | ineq1 |  | 
						
							| 6 | 5 | sseq1d |  | 
						
							| 7 | 5 | oveq1d |  | 
						
							| 8 | 7 | ineq1d |  | 
						
							| 9 | 5 | oveq1d |  | 
						
							| 10 | 8 9 | sseq12d |  | 
						
							| 11 | 6 10 | imbi12d |  | 
						
							| 12 |  | sseq2 |  | 
						
							| 13 |  | sseq1 |  | 
						
							| 14 | 12 13 | anbi12d |  | 
						
							| 15 |  | oveq1 |  | 
						
							| 16 | 15 | ineq1d |  | 
						
							| 17 |  | oveq1 |  | 
						
							| 18 | 16 17 | sseq12d |  | 
						
							| 19 | 14 18 | imbi12d |  | 
						
							| 20 | 11 19 | imbi12d |  | 
						
							| 21 | 20 | imbi2d |  | 
						
							| 22 |  | h0elch |  | 
						
							| 23 | 22 | elimel |  | 
						
							| 24 | 1 2 3 4 23 | mdslmd1lem2 |  | 
						
							| 25 | 21 24 | dedth |  | 
						
							| 26 | 25 | imp |  |