Metamath Proof Explorer


Theorem mdslmd1lem4

Description: Lemma for mdslmd1i . (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 AC
mdslmd.2 BC
mdslmd.3 CC
mdslmd.4 DC
Assertion mdslmd1lem4 xCA𝑀BB𝑀*AACADCABDABxBDBxBCBDBxBCBDBCDxxDxCDxCD

Proof

Step Hyp Ref Expression
1 mdslmd.1 AC
2 mdslmd.2 BC
3 mdslmd.3 CC
4 mdslmd.4 DC
5 ineq1 x=ifxCx0xB=ifxCx0B
6 5 sseq1d x=ifxCx0xBDBifxCx0BDB
7 5 oveq1d x=ifxCx0xBCB=ifxCx0BCB
8 7 ineq1d x=ifxCx0xBCBDB=ifxCx0BCBDB
9 5 oveq1d x=ifxCx0xBCBDB=ifxCx0BCBDB
10 8 9 sseq12d x=ifxCx0xBCBDBxBCBDBifxCx0BCBDBifxCx0BCBDB
11 6 10 imbi12d x=ifxCx0xBDBxBCBDBxBCBDBifxCx0BDBifxCx0BCBDBifxCx0BCBDB
12 sseq2 x=ifxCx0CDxCDifxCx0
13 sseq1 x=ifxCx0xDifxCx0D
14 12 13 anbi12d x=ifxCx0CDxxDCDifxCx0ifxCx0D
15 oveq1 x=ifxCx0xC=ifxCx0C
16 15 ineq1d x=ifxCx0xCD=ifxCx0CD
17 oveq1 x=ifxCx0xCD=ifxCx0CD
18 16 17 sseq12d x=ifxCx0xCDxCDifxCx0CDifxCx0CD
19 14 18 imbi12d x=ifxCx0CDxxDxCDxCDCDifxCx0ifxCx0DifxCx0CDifxCx0CD
20 11 19 imbi12d x=ifxCx0xBDBxBCBDBxBCBDBCDxxDxCDxCDifxCx0BDBifxCx0BCBDBifxCx0BCBDBCDifxCx0ifxCx0DifxCx0CDifxCx0CD
21 20 imbi2d x=ifxCx0A𝑀BB𝑀*AACADCABDABxBDBxBCBDBxBCBDBCDxxDxCDxCDA𝑀BB𝑀*AACADCABDABifxCx0BDBifxCx0BCBDBifxCx0BCBDBCDifxCx0ifxCx0DifxCx0CDifxCx0CD
22 h0elch 0C
23 22 elimel ifxCx0C
24 1 2 3 4 23 mdslmd1lem2 A𝑀BB𝑀*AACADCABDABifxCx0BDBifxCx0BCBDBifxCx0BCBDBCDifxCx0ifxCx0DifxCx0CDifxCx0CD
25 21 24 dedth xCA𝑀BB𝑀*AACADCABDABxBDBxBCBDBxBCBDBCDxxDxCDxCD
26 25 imp xCA𝑀BB𝑀*AACADCABDABxBDBxBCBDBxBCBDBCDxxDxCDxCD